Inclusion of CaF₂ and P₂O₅ in the GTT Oxide database

GTT-Technologies, Herzogenrath Forschungszentrum Jülich

Klaus Hack, Tatjana Jantzen, Elena Yazhenskikh

Contents of presentation

- Introduction
- Addition of CaF2
- Addition of P_2O_5
- Conclusions
- Future developments

Introduction

Addition of CaF₂

- The Al₂O₃-CaF₂ binary system
- The CaF₂-CaO binary system
- The CaF₂-FeO-Fe system
- The CaF_2 -Fe₂O₃-O₂ system
- The CaF₂-MgO binary system
- The CaF₂-SiO₂ binary system
- The Al_2O_3 -CaF₂-CaO ternary system
- Liquidus surface in Al₂O₃-CaF₂-MgO system
- Miscibility gaps in AI_2O_3 -CaF₂-SiO₂ system
- Liquidus surface in CaF₂-CaO-MgO system
- The CaF_2 -CaO-SiO₂ ternary system

Ternary stoichiometric phases modelled by GTT

Name	Phase	System	Description
C3A3F	3CaO 3Al ₂ O ₃ CaF ₂	AI_2O_3 -CaO-Ca F_2	Ca ₄ Al ₆ F ₂ O ₁₂
C11A7F	11CaO 7Al ₂ O ₃ CaF ₂	<i>Al</i> ₂ O ₃ -CaO-CaF ₂	Ca ₁₂ AI ₁₄ F ₂ O ₃₂
C3S2F Cuspidine	3CaO 2SiO ₂ CaF ₂	CaF ₂ -CaO-SiO ₂ Heat of formation [Fukuyama, Tabata,2003] is used	Ca ₄ Si ₂ F ₂ O ₇
C4S2F	4CaO 2SiO ₂ CaF ₂	CaF ₂ -CaO-SiO ₂	$Ca_5Si_2F_2O_8$
C9S3F	9CaO 3SiO ₂ CaF ₂	CaF ₂ -CaO-SiO ₂	Ca ₁₀ Si ₃ F ₂ O ₁₅

Binary Al₂O₃-CaF₂ phase diagram

GTT-Technologies

A.K. Chatterjee, G.I. Zhmoidin, J. Mater. Sci., 7 [1], (1972), pp. 93-97.

A,I, Zaitsev, N.V. Korolyov, B.M. Mogutnov, Journ. Mater. Scien., 26 (1991), pp.1588-1600.

Binary CaF₂-CaO phase diagram

GTT-Technologies

A.K. Chatterjee, G.I. Zhmoidin, J. Mater. Sci., 7 [1], (1972), pp. 93-97.

CaF₂-FeO phase diagram for equilibrium with Fe

GTT-Technologies

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.

Mole fraction FeG

CaF2-FeOx

Predicted CaF₂-Fe₂O₃ phase diagram in air

GTT-Technologies

No experimental data are available for this system.

Binary CaF₂-MgO phase diagram

GTT-Technologies

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.

CaF,-MgO

Fig. 3.414. CaF2-MgO phase diagrams after Budnikov, Tresvyatskii [1], Schlegel [2] and Kojima, Masson [3].

References

- Budnikov, P. P., S. G. Tresvyatskii: Ukrain. Khim. Zhur. 19 (1953), p. 552/5
 Schlegel, E.: Cercetari Metallurgice Bucureshi
- 9 (1967), p. 785/91
 [3] Kojima, H., C. R. Masson: Canad. J. Chem. 47
- (1969), p. 4221/8

Binary CaF₂-SiO₂ phase diagram

GTT-Technologies

L. Hillert, Acta Chem. Scand., 18 [10], (1964), pp. 2411-2411.

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.

CaF2-SiO2

Fig. 3.416. CaF_2 -SiO₂ phase diagram after Hillert [1]. The system CaF_2 -SiO₂ has also been investigated by Putlin et al. [2], however, the final compositions of the investigated samples belong rather to the ternary system CaF_2 -CaO-SiO₂.

References

 Hillert, L. H.: Acta Polytech. Seand., Chemistry Including Metallurgy, Series No. 90, (1970)
 Putlin, Y. M., A. D. Romanova, A. J. Milov: Ionnye Rasplavy (1976) No. 4, p. 79/83

Isothermal section at 1100°C in Al₂O₃-CaF₂-CaO

GTT-Technologies

C. Brisi, P. Rolando, Ann. Chim. (Rome), 57 [11], (1967), pp.1304-1315.

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.

Isothermal section at 1600°C in Al₂O₃-CaF₂-CaO

GTT-Technologies

R. Ries, K. Schwerdtfeger, Arch. Eisenhüttenwes., 51, (1980), pp.123-129.

Isothermal section at 1800°C in Al₂O₃-CaF₂-CaO

Isopleth section C11A7F–C3A3F

GTT-Technologies

A.K. Chatterjee, G.I. Zhmoidin, Izv. Akad. Nauk SSSR, Neorg. Mater., 8 [5], (1972), pp.886-892.

Isopleth section CaAl₂O₄ – CaF₂

GTT-Technologies

A.K. Chatterjee, G.I. Zhmoidin, Izv. Akad. Nauk SSSR, Neorg. Mater., 8 [5], (1972), pp.886-892.

A,I, Zaitsev, N.V. Korolyov, B.M. Mogutno Journ. Mater. Scien., 26 (1991), pp.1588-1

Isopleth section C3A3F – CaAl₄O₇

GTT-Technologies

A.K. Chatterjee, G.I. Zhmoidin, Izv. Akad. Nauk SSSR, Neorg. Mater., 8 [5], (1972), pp.886-892.

Liquidus surface in Al₂O₃-CaF₂-CaO

GTT-Technologies

Fig. 3.420. Liquidus surface in the AI_2O_3 -Ca F_2 -CaO system after Chatterjee, Zhmoidin [1] (sealed samples). For liquidus relations in numerous sub-systems, see also Chatterjee, Zhmoidin [2], Smirnov et al. [3] and Zhmoidin, Chatterjee [4].

Liquidus surface in Al₂O₃-CaF₂-MgO

GTT-Technologies

Fig. 3.424. Al_2O_3 -CaF₂-MgO phase diagram in a neutral atmosphere after Povolotskii et al. [1]. Some liquidus temperatures for ternary compositions have also been reported by Keene, Quinn [2].

References

- [1] Poveletskii, D. Ya., V. E. Roshchin, V. P. Gribanov, A. V. Rechkalova: Izv. Vyssh. Uchebn. Zaved., Chern. Metall. (1983) No. 4, p. 8/12
- [2] Keene, B. J., T. J. Quinn: High Temp. High Pressures 11 (1979), p. 693/702

Miscibility gaps in Al₂O₃-CaF₂-SiO₂

GTT-Technologies

Fig. 3.425. Miscibility gap in the Al_2O_3 - CaF_2 -SiO₂ system after Hillert [1, 2] (1380 °C) and Yershova [3] (1460 °C). Some ternary compositions have also been investigated by Khokhlov et al. [4].

References

- [1] Hillert, L. H.: Acta Chem. Scand. 19 (1965) No. 10, p. 2436/8
- [2] Hillert, L. H. Acta Polytech. Scand., Chemistry Including Metallurgy, Series No. 90, (1970)
- [3] Yershova, Z. P.: Geokhimiya (1957) No. 4, p. 350/8
- [4] Khokhlov, B. G., L. E. Ugryumova, L. P. N. V. N. Solodehenko: Deposited Doc. VINITI (1983) No. 2368-83, p. 1/11

Isothermal section at 1425°C in Al₂O₃-CaF₂-SiO₂

Predicted isothermal sections in Al₂O₃-CaF₂-SiO₂

Predicted liquidus surface in Al₂O₃-CaF₂-SiO₂

Liquidus surface in CaF₂-CaO-MgO

GTT-Technologies

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995.

Isothermal section at 1000°C in CaF₂-CaO-SiO₂

GTT-Technologies

Cuspidine - from the Greek cuspis, for a spear, the characteristic shape of the twinned crystals.

Isopleth section Cuspidine – CaF₂

GTT-Technologies

(B) pseudobinary phase diagram for cuspidine-CaF2 system; Cuspidine = Ca4Si2O7F2 H. Fukuyama, T. Watanabe, M. Susa, and K. Nagata, "Pseudo-binary Phase Diagram of the Cuspidine -CaF2 System - Relating to Mold Flux for Continuous Casting of Steel -"; pp. 61-75 in EPD Congr. 1999, Proc. Sess. Symp., TMS Annual Meeting, San Diego, California, February 28-March 4, 1999. Edited by B. Mishra, Minerals, Metals & Materials Society, Warrendale, Pennsylvania, 1999.

Isopleth section CaSiO₃ – CaF₂

GTT-Technologies

T. Baak and A. Oelander, Acta Chem. Scand., 9 [8] 1350-1354 (1955).

Dashed lines after Karandeef.

B. Karandeeff, Z. Anorg. Chem., 68 [3] 188-197 (1910)

Isopleth section Ca₂SiO₄ – CaF₂

GTT-Technologies

W. H. Gutt and G. J. Osborne, Trans. Br. Ceram. Soc., **65** [9] 521-534 (1966).

Isopleth section Ca₃SiO₅ – CaF₂

GTT-Technologies

W. H. Gutt and G. J. Osborne, Trans. Br. Ceram. Soc., 69 [3] 125-129 (1970).

Liquidus surface in CaF₂-CaO-SiO₂

GTT-Technologies

W. H. Gutt and G. J. Osborne, Trans. Br. Ceram. Soc., 69 [3] 125-129 (1970).

Addition of P₂O₅

- The Fe-P binary system
- The AI_2O_3 - P_2O_5 system
- The CaO-P₂O₅ system
- The Cr₂O₃-P₂O₅ phase diagram in air
- The Fe_2O_3 - P_2O_5 phase diagram in air
- The FeO–P₂O₅ phase diagram in equilibrium with Fe
- The MgO-P₂O₅ system
- The ternary FeO-Fe₂O₃-P₂O₅ system

Addition of P₂O₅

GTT-Technologies

The associate species containing P were added in order to describe the liquid phase in the AI_2O_3 -CaO-Cr₂O₃-FeO-Fe₂O₃-MgO system containing P₂O₅.

System	Associate species	Description
		MeO _x : P ₂ O ₅
Al ₂ O ₃ -P ₂ O ₅	AIPO ₄ (SGPS)- Berlinite	
$Cr_2O_3 - P_2O_5$	CrPO ₄	1:1
$Fe_2O_3 - P_2O_5$	FePO ₄ (SGPS)	
CaO - P ₂ O ₅	Ca ₃ P ₂ O ₈ , Ca ₂ P ₂ O ₇ , CaP ₂ O ₈ [Serena 2011]	
FeO - P ₂ O ₅	Fe ₃ P ₂ O ₈ , Fe ₂ P ₂ O ₇ , FeP ₂ O ₆ ,	3:1, 2:1, 1:1
MgO - P ₂ O ₅	$Mg_{3}P_{2}O_{8}$ (SGPS), $Mg_{2}P_{2}O_{7}$, $MgP_{2}O_{8}$	

Modelling of binary P-containing phases

System	Phase	Description	Used data
Fe-P	fcc-A1	$(\underline{Fe}, O, P)_1 (Va)_1$	[99Lee]
	bcc-A2	$(\underline{Fe}, O, P)_1 (Va)_3$	[99Lee]
	FeP	stoichiometric	[99Lee]
	Fe2P	stoichiometric	[99Lee]
	Fe3P	stoichiometric	[99Lee]
Al ₂ O ₃ -P ₂ O ₅	$3AI_2O_3 P_2O_5$ AIPO ₄ (s3) Berlinite AIPO ₄ (s2) AIPO ₄ (s1) AI ₂ O ₃ ·3P ₂ O ₅	stoichiometric stoichiometric stoichiometric stoichiometric stoichiometric	- SGPS SGPS -
CaO-P ₂ O ₅	CaO·2P ₂ O ₅	stoichiometric	[Serena 2011]
	2CaO·3P ₂ O ₅	stoichiometric	[Serena 2011]
	CaO·P ₂ O ₅	stoichiometric	[Serena 2011]
	2CaO·P ₂ O ₅ (s1,s2,s3)	stoichiometric	[Serena 2011] revised (T _{tr})
	3CaO·P ₂ O ₅ (s1,s2,s3)	stoichiometric	[Serena 2011] revised (T _{tr})
	4CaO·P ₂ O ₅	stoichiometric	[Serena 2011]

Modelling of binary P-containing phases

System	Phase	Description	Used data
Cr ₂ O ₃ -P ₂ O ₅	$CrPO_4$ $5Cr_2O_3 P_2O_5$ $3Cr_2O_3 P_2O_5$	stoichiometric stoichiometric stoichiometric	
FeO-P ₂ O ₅	$FeO P_2O_5$ $2FeO P_2O_5$ $3FeO P_2O_5$	stoichiometric stoichiometric stoichiometric	- -
Fe ₂ O ₃ -P ₂ O ₅	$Fe_2O_3 \cdot 3P_2O_5$ $2Fe_2O_3 \cdot 3P_2O_5$ $Fe_2O_3 \cdot P_2O_5$ $3Fe_2O_3 \cdot P_2O_5$	stoichiometric stoichiometric stoichiometric stoichiometric	- - SGPS changed -
MgO-P ₂ O ₅	$MgO P_2O_5$ $2MgO P_2O_5$ $3MgO P_2O_5$	stoichiometric stoichiometric stoichiometric	- S _f , H _{fus} [Oetting, 1963] SGPS changed

Modelling of ternary P-containing phases

System	Phase	Description	Used data
FeO-Fe ₂ O ₃ -P ₂ O ₅	$Fe_{7}P_{6}O_{24}$ $Fe_{18}P_{2}O_{24}$ $Fe_{10}P_{6}O_{26}$ $Fe_{4}P_{2}O_{10}$	$3FeO \cdot 2Fe_2O_3 \cdot 3P_2O_5$ (stoichiometric) $16FeO \cdot Fe_2O_3 \cdot P_2O_5$ (stoichiometric) $8FeO \cdot Fe_2O_3 \cdot 3P_2O_5$ (stoichiometric) $2FeO \cdot Fe_2O_3 \cdot P_2O_5$ (stoichiometric)	- - -

Binary Fe-P phase diagram [99Lee]

Binary Al₂O₃-P₂O₅ phase diagram

GTT-Technologies

Berlinite (AIPO₄) - It was first described in 1868 for an occurrence in the Västana iron mine, Scania, Sweden and named for Nils Johan Berlin (1812–1891) of Lund University.

P.E. Stone, E.P. Egan, J.R. Lehr, J. Am, Ceram. Soc., 39 [3], (1956), pp.89-98.

I.V. Tananaev, E.V. Maksimchuk, Y. G. Bushuev, S.A. Shestov, Izv. Akad. Nauk SSSR, Neorg. Mater., 14 [4], (1978), pp.719-722.

CaO-P₂O₅ phase diagram

Cr₂O₃-P₂O₅ phase diagram in air

FeO-P₂O₅ phase diagram in equilibrium with Fe

Fe₂O₃–P₂O₅ phase diagram in air

GTT-Technologies

Eisen, Düsseldorf, 1995., p.68.

MgO-P₂O₅ phase diagram

Isothermal section in FeO-Fe₂O₃-P₂O₅ at 900°C

GTT-Technologies

Fig. 3.105. Isothermal section through the FeO-Fe₂O₃-P₂O₅ system at 900 °C after Modaressi et al. [3]. Two ternary phases reported previously by Wentrup [1] have been reformulated. According to Gorgunov et al. [5], $3FeO 2Fe_2O_3 3P_2O_5$ melts at 996 °C. For a discussion of the ternary system Fe-O-P, see Raghavan [6].

Slag Atlas, 2nd Ed., Verlag Stahl-Eisen, Düsseldorf, 1995., p.68. A. Modaressi, J.C. Kaell, B.Malaman, R. Gerardi, C. Gleitze, Mat. Res. Bull. 18 (1983), No. 1, pp.101-109.

Conclusions

- All systems were assessed using experimental phase diagram information. Other experimental information, eg. enthalpies and activities, is scarce.
- The liquid phase in all subsystems was evaluated using associate species model (two cations per species).
- CaF_2 has so far been integrated into the reduced core system CaO-MgO-Al₂O₃-FeO-Fe₂O₃-SiO₂. All binary and 5 ternary systems were described.
- The stoichiometric phases 3CaO·3Al₂O₃·CaF₂, 11CaO·7Al₂O₃·CaF₂, 4CaO·2SiO₂·CaF₂, 3CaO·2SiO₂·CaF₂(Cuspidine), and 9CaO·3SiO₂·CaF₂ were incorporated.
- The Al₂O₃-CaF₂-CaO system is critically evaluated according to the experimentally determined miscibility gap in the liquid phase.
- In the thermodynamic assessments of the binary systems Al₂O₃-P₂O₅, CaO-P₂O₅, Cr₂O₃-P₂O₅, FeO-P₂O₅, Fe₂O₃-P₂O₅, MgO-P₂O₅ as well as the ternary FeO-Fe₂O₃-P₂O₅ system 28 stoichiometric solid phases containing P were incorporated.

Future developments

Future developments

Happy Bírthday, Gunnar!

